

9.º Congresso do Comité Português da URSI Lisboa 04/12/2015

INSTITUIÇÕES ASSOCIADAS

universidade de aveiro

• U	68)	С	•	
-----	-----	---	---	--

UNIVERSIDADE DE COIMBRA

UNIVERSIDADE DA BEIRA INTERIOR Covilhã | Portugal

ISCTE 🐼 IUL Instituto Universitário de Lisboa

Diffractionless Propagation of Electron Waves in Graphene Superlattices

David E. Fernandes, Manuel Rodrigues, Gabriel Falcão and Mário G. Silveirinha

Universidade de Coimbra - Instituto de Telecomunicações Departamento de Engenharia Electrotécnica e de Computadores

instituto de telecomunicações © 2014, it - instituto de telecomunicações. Todos os direitos reservados.

AUTORIDADE NACIONAL

DE COMUNICACÕES

Optical anisotropy

Super collimation of the radiation

http://arxiv.org/abs/1511.06714

Increased Directionality!

Electronic anisotropy

Graphene

Graphene: a two dimensional carbon based material!

http://tinyurl.com/pbpcuku

Special Properties of Graphene

Flexible and light, yet stronger than steel!!

Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration

Jae-Hwang Lee^{1,2,*}, Phillip E. Loya¹, Jun Lou¹, Edwin L. Thomas^{1,*}

http://tinyurl.com/oy6zovh

Excellent thermal conductor

Graphene Thermal Properties: Applications in Thermal Management and Energy Storage

Jackie D. Renteria ^{1,2}, Denis L. Nika ^{1,3} and Alexander A. Balandin ^{1,2,*}

5

INSTITUIÇÕES ASSOCIADAS

dfernandes@co.it.pt

9.º Congresso do Comité Português da URSI, Lisboa, 4/12/2015

Electronic Properties of Graphene

Eva Y Andrei et al, Rep. Prog. Phys. 75 056501, 2012

- Linear energy dispersion.
- Zero effective mass.
- No bandgap.

INSTITUIÇÕES ASSOCIADAS

dfernandes@co.it.pt

9.º Congresso do Comité Português da URSI , Lisboa, 4 /12/2015

Graphene Superlattices

http://goo.gl/JGbgeC

Graphene based heterostructures

INSTITUIÇÕES ASSOCIADAS

• Tailoring the potential \leftrightarrow gain control over the electron propagation.

Graphene Superlattices – Effective Medium Model

Periodic 1-D potential $V(\mathbf{r}) = V(x) = V_{av} + V_{osc}(x)$

Effective medium theory

M. G. Silveirinha and N. Engheta 2012 *Phys. Rev. B* **85** 195413

D. E. Fernandes, M. G. Silveirinha and N. Engheta 2014 *Phys. Rev. B* **90**, 041406(R)

χ

С •

8

INSTITUICÕES ASSOCIADAS

 χ anisotropy ratio (depends on $V_{osc}(x)$)

Preferred direction of propagation for the electrons

dfernandes@co.it.pt

9.º Congresso do Comité Português da URSI , Lisboa, 4 /12/2015

Tailoring Transport Properties of Electrons

Pristine Graphene: $\chi = 1$

$$v_y = v_x = v_F$$

No preferred direction of propagation!

instituto de telecomunicações

DE DE COIMBRA

C ·

9

INSTITUICÕES ASSOCIADAS

9.º Congresso do Comité Português da URSI , Lisboa, 4 /12/2015

Tailoring Transport Properties of Electrons

Regimes of extreme anisotropy:

Electrons tend to propagate only along the *x*-direction!!

Time animations

GSLs vs. Pristine Graphene

•Tailoring the electric potential in GSLs allows to obtain nondiffractive propagation.

•GSLs may be used for miniaturization of electronic devices.

•Electronic anisotropy creating optical anisotropy!! (Work in progress).

•Enhanced nonlinearities in graphene superlattices (solitons, bistability, highorder harmonics generation ,...).

Potential Applications of Graphene Structures

Transparent and flexible electrodes

of graphene electrodes

Sukang Bae¹, Sang Jin Kim¹, Dolly Shin^{1,3}, Jong-Hyun Ahn^{1,2} and Byung Hee Hong¹.

UM wearable vapor sensor

http://tinyurl.com/odb7ksz

Solar cells

http://tinyurl.com/pwf6fvt

14

INSTITUIÇÕES ASSOCIADAS

dfernandes@co.it.pt

Graphene batteries and supercapacitors

Optoelectronics

And much more...

instituto de telecomunicações

9.º Congresso do Comité Português da URSI, Lisboa, 4/12/2015

Energy Dispersion of Graphene Superlattices

Stationary states energy dispersion:

 $|E| = \hbar v_F \sqrt{k_x^2 + \chi^2 k_y^2}$

Pristine Graphene

 $\chi = 1$

dfernandes@co.it.pt

$$\mathbf{v} = \nabla_k E/\hbar = v_F \frac{\left(k_x, \chi^2 k_y\right)}{|\mathbf{k}|}$$

Superlattice in extreme anisotropy regime χ

15

INSTITUIÇUES ASSULIADAS

9.º Congresso do Comité Português da URSI , Lisboa, 4 /12/2015

FDTD algorithm

Characterization of electron wave propagation in complex GSL structures

- Determining the scattering properties of GSL slabs.
- Characterization of the optical properties of graphene structures (conductivity). *Work in progress...*

FDTD Algorithm

Effective medium model

$$(\hat{H}_{ef}\mathbf{\psi})(\mathbf{r}) = i\hbar \frac{\partial}{\partial t}\mathbf{\psi} - i\hbar v_F \mathbf{j}$$

Time update equations:

17

$$\frac{\partial \psi_1}{\partial t} = -v_F \left(\frac{d}{dx} - i\chi \frac{d}{dy} \right) \psi_2 + \frac{V_{ef}}{i\hbar} \psi_1 + j_1$$
Couplin
$$\frac{\partial \psi_2}{\partial t} = -v_F \left(\frac{d}{dx} + i\chi \frac{d}{dy} \right) \psi_1 + \frac{V_{ef}}{i\hbar} \psi_2 + j_2$$

$$\psi_1 \text{ are}$$

Coupling between Ψ_1 and Ψ_2

INSTITUIÇÕES ASSOCIADAS

dfernandes@co.it.pt

Discretization

Derivatives \rightarrow Finite Difference (FD) method

$$\frac{\partial}{\partial i}F(i) = \frac{F(i+\Delta i) - F(i)}{\Delta i}$$
$$i = x, y, t$$

q+1 Δ_y q (x_p, y_q) Ψ_1 ψ_1 ψ_1 ψ_2 ψ_2 ψ_1 ψ_2 ψ_1 ψ_2 ψ_1 ψ_1 ψ_2 ψ_1 ψ_1 ψ_2 ψ_1 ψ_2 ψ_1 ψ_2 ψ_1 ψ_2 ψ_2 ψ_1 ψ_2 ψ_2 ψ_1 ψ_2 ψ_2 $\psi_$

CSTAltairFEKO

OMSOL

INSTITUIÇÕES ASSOCIADAS

9.º Congresso do Comité Português da URSI , Lisboa, 4 /12/2015

dfernandes@co.it.pt

Time Evolution of Initial Electronic States

Time animations

instituto de

telecomunicações

U C ·

.

dfernandes@co.it.pt

9.º Congresso do Comité Português da URSI , Lisboa, 4 /12/2015